Interesante

Matrices en Matemáticas

Matrices en Matemáticas

En matemáticas, una matriz se refiere a un conjunto de números u objetos que seguirán un patrón específico. Una matriz es una disposición ordenada (a menudo en filas, columnas o una matriz) que se usa más comúnmente como una herramienta visual para demostrar la multiplicación y la división.

Hay muchos ejemplos cotidianos de matrices que ayudan a comprender la utilidad de estas herramientas para el análisis rápido de datos y la simple multiplicación o división de grandes grupos de objetos. Considere una caja de chocolates o una caja de naranjas que tienen una disposición de 12 a través y 8 hacia abajo en lugar de contar cada uno, una persona podría multiplicar 12 x 8 para determinar las cajas que contienen 96 chocolates o naranjas.

Ejemplos como estos ayudan a la comprensión de los jóvenes estudiantes de cómo funcionan la multiplicación y la división en un nivel práctico, razón por la cual las matrices son más útiles cuando se les enseña a los jóvenes a multiplicar y dividir partes de objetos reales como frutas o dulces. Estas herramientas visuales permiten a los estudiantes comprender cómo observar patrones de "suma rápida" puede ayudarlos a contar cantidades más grandes de estos elementos o dividir cantidades más grandes de elementos en partes iguales entre sus compañeros.

Describiendo matrices en multiplicación

Cuando se usan matrices para explicar la multiplicación, los maestros a menudo se refieren a las matrices por los factores que se multiplican. Por ejemplo, una matriz de 36 manzanas dispuestas en seis columnas de seis filas de manzanas se describiría como una matriz de 6 por 6.

Estas matrices ayudan a los estudiantes, principalmente en los grados tercero a quinto, a comprender el proceso de cálculo al dividir los factores en partes tangibles y describir el concepto de que la multiplicación se basa en dichos patrones para ayudar a sumar rápidamente grandes sumas varias veces.

En la matriz de seis por seis, por ejemplo, los estudiantes pueden comprender que si cada columna representa un grupo de seis manzanas y hay seis filas de estos grupos, tendrán 36 manzanas en total, que pueden determinarse rápidamente no individualmente contando las manzanas o agregando 6 + 6 + 6 + 6 + 6 + 6 pero simplemente multiplicando el número de elementos en cada grupo por el número de grupos representados en la matriz.

Describiendo matrices en la división

En la división, las matrices también se pueden usar como una herramienta útil para describir visualmente cómo grandes grupos de objetos se pueden dividir por igual en grupos más pequeños. Usando el ejemplo anterior de 36 manzanas, los maestros pueden pedirles a los estudiantes que dividan la gran suma en grupos de igual tamaño para formar una matriz como guía para la división de las manzanas.

Si se le pide que divida las manzanas en partes iguales entre 12 estudiantes, por ejemplo, la clase produciría una matriz de 12 por 3, lo que demuestra que cada estudiante recibiría tres manzanas si las 36 se dividieran en partes iguales entre las 12 personas. Por el contrario, si se les pidiera a los estudiantes que dividieran las manzanas entre tres personas, producirían una matriz de 3 por 12, lo que demuestra la propiedad conmutativa de la multiplicación de que el orden de los factores en la multiplicación no afecta el producto de multiplicar estos factores.

Comprender este concepto central de la interacción entre la multiplicación y la división ayudará a los estudiantes a formar una comprensión fundamental de las matemáticas en su conjunto, permitiendo cálculos más rápidos y complejos a medida que continúan en álgebra y luego las matemáticas aplicadas en geometría y estadística.